判断n以内素数个数有很多算法,最简单的是循环直接判断,这个效率不用说,n稍大就不行了。最流行的是筛选法,原理就是定义一个素数标志位表,初始为1,遇到一个数如果对应标志位为1判断这个数是不是素数,是将该为置1,不是放0,然后将他的倍数位置全部置0,然后继续。。这个效率还是比较快的,但是计算到10^8时候需要3s左右了,对于一般要求基本够了,但是对于ACM里面对时间要求很严还是不够。可以对帅选法进行优化,不如偶数直接跳过,以后直接加偶数倍,甚至加入移位运算判断是不是3的倍数,5的倍数等等,最后基本勉强在ACM要求的时间之内。下来介绍一种逆天的算法:MEISSEL-LEHMER,布吉岛的可以百度下。不容易看懂。。。。。。
先看下效果绝对碉堡!!!!
代码如下:
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <time.h> #include <math.h> __int64 *primarr, *v; __int64 q = 1, p = 1; //π(n) __int64 pi(__int64 n, __int64 primarr[], __int64 len) { __int64 i = 0, mark = 0; for (i = len - 1; i > 0; i--) { if (primarr[i] < n) { mark = 1; break; } } if (mark) return i + 1; return 0; } //Φ(x,a) __int64 phi(__int64 x, __int64 a, __int64 m) { if (a == m) return (x / q) * p + v[x % q]; if (x < primarr[a - 1]) return 1; return phi(x, a - 1, m) - phi(x / primarr[a - 1], a - 1, m); } __int64 prime(__int64 n) { char *mark; __int64 mark_len; __int64 count = 0; __int64 i, j, m = 7; __int64 sum = 0, s = 0; __int64 len, len2, len3; mark_len = (n < 10000) ? 10002 : ((__int64)exp(2.0 / 3 * log(n)) + 1); //筛选n^(2/3)或n内的素数 mark = (char *)malloc(sizeof(char) * mark_len); memset(mark, 0, sizeof(char) * mark_len); for (i = 2; i < (__int64)sqrt(mark_len); i++) { if (mark[i]) continue; for (j = i + i; j < mark_len; j += i) mark[j] = 1; } mark[0] = mark[1] = 1; //统计素数数目 for (i = 0; i < mark_len; i++) if (!mark[i]) count++; //保存素数 primarr = (__int64 *)malloc(sizeof(__int64) * count); j = 0; for (i = 0; i < mark_len; i++) if (!mark[i]) primarr[j++] = i; if (n < 10000) return pi(n, primarr, count); //n^(1/3)内的素数数目 len = pi((__int64)exp(1.0 / 3 * log(n)), primarr, count); //n^(1/2)内的素数数目 len2 = pi((__int64)sqrt(n), primarr, count); //n^(2/3)内的素数数目 len3 = pi(mark_len - 1, primarr, count); //乘积个数 j = mark_len - 2; for (i = (__int64)exp(1.0 / 3 * log(n)); i <= (__int64)sqrt(n); i++) { if (!mark[i]) { while (i * j > n) { if (!mark[j]) s++; j--; } sum += s; } } free(mark); sum = (len2 - len) * len3 - sum; sum += (len * (len - 1) - len2 * (len2 - 1)) / 2; //欧拉函数 if (m > len) m = len; for (i = 0; i < m; i++) { q *= primarr[i]; p *= primarr[i] - 1; } v = (__int64 *)malloc(sizeof(__int64) * q); for (i = 0; i < q; i++) v[i] = i; for (i = 0; i < m; i++) for (j = q - 1; j >= 0; j--) v[j] -= v[j / primarr[i]]; sum = phi(n, len, m) - sum + len - 1; free(primarr); free(v); return sum; } int main() { __int64 n; __int64 count; int h; clock_t start, end; while(scanf("%I64d", &n)!=EOF) { p=1; q=1; start = clock(); count = prime(n); end = clock() - start; printf("%I64d(%d亿)内的素数个数为%I64d\n",n,n/100000000,count); printf("用时%lf毫秒\n",(double)end/1000); } return 0; }
作者:jianxia_wzx 发表于2013-3-12 15:47:06 原文链接
阅读:38 评论:0 查看评论