/* 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。 当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。 输入格式: 第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。 第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。 输出格式: 输出一个整数,表示不同连号区间的数目。 示例: 用户输入: 4 3 2 4 1 程序应输出: 7 用户输入: 5 3 4 2 5 1 程序应输出: 9 解释: 第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4] 第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5] 资源约定: 峰值内存消耗(含虚拟机) < 64M CPU消耗 < 5000ms 请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。 所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。 注意:主类的名字必须是:Main,否则按无效代码处理。*/ import java.util.Scanner; public class 连号区间 { static int kinds=0; static void lianhao(int a[]) { for(int i=1;i<a.length;i++) { int min=a[i]; int max=a[i]; for(int j=i;j<a.length;j++) { min=Math.min(min, a[j]); max=Math.max(max, a[j]); if(max-min==j-i) { kinds++;} } } } public static void main(String[] args) { Scanner cin=new Scanner(System.in); int n=cin.nextInt(); int a[]=new int[n+1]; for(int i=1;i<=n;i++) a[i]=cin.nextInt(); lianhao(a); System.out.println(kinds); } }
作者:u010736393 发表于2013-6-2 21:17:17 原文链接
阅读:0 评论:0 查看评论