ELGamal数字签名方案的实现
1. 问题描述
为简化问题,我们取p=19,g=2,私钥x=9,则公钥y=29 mod 19=18。消息m的ELGamal签名为(r,s),其中r=gk mod p,s=(h(m)-xr)k-1 mod (p-1)
2.基本要求
考虑p取大素数的情况。
3. 实现提示
① 模n求逆a-1modn运算。
② 模n的大数幂乘运算
由于大素数的本原元要求得很费事,所以签名所需要的数值我已经事先给出,当然这些数值比较小,有兴趣的同学可以自行将数值变大.
ELGamal离不开大数包的支持!
BigInteger.h
#pragma once #include <cstring> #include <string> #include <algorithm> #include <assert.h> #include <ctime> #include <iostream> using namespace std; const int maxLength = 512; const int primeLength = 30; const int primesBelow2000[303] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 }; class BigInteger { typedef unsigned char byte; public: BigInteger(void); BigInteger(__int64 value); BigInteger(unsigned __int64 value); BigInteger(const BigInteger &bi); BigInteger(string value, int radix); BigInteger(byte inData[], int inLen); BigInteger(unsigned int inData[], int inLen); BigInteger operator -(); BigInteger operator =(const BigInteger &bi2); BigInteger operator +(BigInteger &bi2); BigInteger operator -(BigInteger bi2); BigInteger operator /(BigInteger bi2); BigInteger operator *(BigInteger bi2); void singleByteDivide(BigInteger &bi1, BigInteger &bi2, BigInteger &outQuotient, BigInteger &outRemainder); void multiByteDivide(BigInteger &bi1, BigInteger &bi2, BigInteger &outQuotient, BigInteger &outRemainder); BigInteger operator %(BigInteger bi2); BigInteger operator +=(BigInteger bi2); BigInteger operator -=(BigInteger bi2); int bitCount(); BigInteger modPow(BigInteger exp, BigInteger n); friend ostream& operator<<(ostream& output, BigInteger &bi1); friend BigInteger GetPrime(); friend bool Miller_Robin(BigInteger &bi1); friend BigInteger MultipInverse(BigInteger &bi1, BigInteger &n); friend BigInteger extended_euclidean(BigInteger n, BigInteger m, BigInteger &x, BigInteger &y); friend BigInteger MultipInverse(BigInteger &bi1, BigInteger &n); //求乘法逆 friend BigInteger Gcd(BigInteger &bi1, BigInteger &bi2); //求最大公约数 friend bool IsPrime (BigInteger &obj); BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant); bool operator >=(BigInteger bi2) { return ((*this) == bi2 || (*this) > bi2); } bool operator >(BigInteger bi2); bool operator ==(BigInteger bi2); bool operator !=(BigInteger bi2); int shiftRight(unsigned int buffer[], int bufLen, int shiftVal); BigInteger operator <<(int shiftVal); int shiftLeft(unsigned int buffer[], int bufLen, int shiftVal); bool operator <(BigInteger bi2); string DecToHex(unsigned int value, string format); string ToHexString(); public: ~BigInteger(void); public: int dataLength; // number of actual chars used unsigned int *data; };
BigInteger.cpp
#include "BigInteger.h" BigInteger::BigInteger(void) //默认的构造函数 : dataLength(0), data(0) { data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(unsigned int)); dataLength = 1; } BigInteger::BigInteger(__int64 value) //用一个64位的值来初始化大数 { data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(unsigned int)); //先清零 __int64 tempVal = value; dataLength = 0; while (value != 0 && dataLength < maxLength) { data[dataLength] = (unsigned int)(value & 0xFFFFFFFF); //取低位 value = value >> 32; //进位 dataLength++; } if (tempVal > 0) // overflow check for +ve value { if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) assert(false); } else if (tempVal < 0) // underflow check for -ve value { if (value != -1 || (data[dataLength - 1] & 0x80000000) == 0) assert(false); } if (dataLength == 0) dataLength = 1; } BigInteger::BigInteger(unsigned __int64 value) //用一个无符号的64位整数来初始化大数 { data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(unsigned int)); dataLength = 0; while (value != 0 && dataLength < maxLength) { data[dataLength] = (unsigned int)(value & 0xFFFFFFFF); value >>= 32; dataLength++; } if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) assert(false); if (dataLength == 0) //防止输入的value=0 dataLength = 1; } BigInteger::BigInteger(const BigInteger &bi) //用大数初始化大数 { data = new unsigned int[maxLength]; dataLength = bi.dataLength; for (int i = 0; i < maxLength; i++) //考虑到有负数的情况,所以每一位都要复制 data[i] = bi.data[i]; } BigInteger::~BigInteger(void) { if (data != NULL) { delete []data; } } BigInteger::BigInteger(string value, int radix) //输入转换函数,将字符串转换成对应进制的大数 { //一般不处理负数 BigInteger multiplier((__int64)1); BigInteger result; transform(value.begin(), value.end(), value.begin(), toupper); //将小写字母转换成为大写 int limit = 0; if (value[0] == '-') limit = 1; for (int i = value.size() - 1; i >= limit; i--) { int posVal = (int)value[i]; if (posVal >= '0' && posVal <= '9') //将字符转换成数字 posVal -= '0'; else if (posVal >= 'A' && posVal <= 'Z') posVal = (posVal - 'A') + 10; else posVal = 9999999; // arbitrary large 输入别的字符 if (posVal >= radix) //不能大于特定的进制,否则终止 { assert(false); } else { result = result + (multiplier * BigInteger((__int64)posVal)); if ((i - 1) >= limit) //没有到达尾部 multiplier = multiplier * BigInteger((__int64)radix); } } if (value[0] == '-') //符号最后再处理 result = -result; if (value[0] == '-') //输入为负数,但得到的结果为正数,可能溢出了 { if ((result.data[maxLength - 1] & 0x80000000) == 0) assert(false); } else //或者说,输入为正数,得到的结果为负数,也可能溢出了 { if ((result.data[maxLength - 1] & 0x80000000) != 0) assert(false); } data = new unsigned int[maxLength]; //memset(data, 0, maxLength * sizeof(unsigned int)); for (int i = 0; i < maxLength; i++) data[i] = result.data[i]; dataLength = result.dataLength; } BigInteger::BigInteger(byte inData[], int inLen) //用一个char类型的数组来初始化大数 { dataLength = inLen >> 2; //一个unsigned int占32位,而一个unsigned char只占8位 //因此dataLength应该是至少是inLen/4,不一定整除 int leftOver = inLen & 0x3; //取最低两位的数值,为什么要这样干呢?实际上是为了探测len是不是4的倍数,好确定dataLength的长度 if (leftOver != 0) //不能整除的话,dataLength要加1 dataLength++; if (dataLength > maxLength) assert(false); data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(unsigned int)); for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++) { data[j] = (unsigned int)((inData[i - 3] << 24) + (inData[i - 2] << 16) + (inData[i - 1] << 8) + inData[i]); //我们知道:一个unsigned int占32位,而一个unsigned char只占8位,因此四个unsigned char才能组成一个unsigned int //因此取inData[i - 3]为前32-25位,inData[i - 2]为前24-17~~~ //i % 4 = 0 or 1 or 2 or 3 余0表示恰好表示完 } if (leftOver == 1) data[dataLength - 1] = (unsigned int)inData[0]; else if (leftOver == 2) data[dataLength - 1] = (unsigned int)((inData[0] << 8) + inData[1]); else if (leftOver == 3) data[dataLength - 1] = (unsigned int)((inData[0] << 16) + (inData[1] << 8) + inData[2]); while (dataLength > 1 && data[dataLength - 1] == 0) dataLength--; } BigInteger::BigInteger(unsigned int inData[], int inLen) //用一个unsigned int型数组初始化大数 { dataLength = inLen; if (dataLength > maxLength) assert(false); data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(maxLength)); for (int i = dataLength - 1, j = 0; i >= 0; i--, j++) data[j] = inData[i]; while (dataLength > 1 && data[dataLength - 1] == 0) dataLength--; } BigInteger BigInteger::operator *(BigInteger bi2) //乘法的重载 { BigInteger bi1(*this); int lastPos = maxLength - 1; bool bi1Neg = false, bi2Neg = false; //首先对两个乘数取绝对值 try { if ((this->data[lastPos] & 0x80000000) != 0) //bi1为负数 { bi1Neg = true; bi1 = -bi1; } if ((bi2.data[lastPos] & 0x80000000) != 0) //bi2为负数 { bi2Neg = true; bi2 = -bi2; } } catch (...) { } BigInteger result; //绝对值相乘 try { for (int i = 0; i < bi1.dataLength; i++) { if (bi1.data[i] == 0) continue; unsigned __int64 mcarry = 0; for (int j = 0, k = i; j < bi2.dataLength; j++, k++) { // k = i + j unsigned __int64 val = ((unsigned __int64)bi1.data[i] * (unsigned __int64)bi2.data[j]) + (unsigned __int64)result.data[k] + mcarry; result.data[k] = (unsigned __int64)(val & 0xFFFFFFFF); //取低位 mcarry = (val >> 32); //进位 } if (mcarry != 0) result.data[i + bi2.dataLength] = (unsigned int)mcarry; } } catch (...) { assert(false); } result.dataLength = bi1.dataLength + bi2.dataLength; if (result.dataLength > maxLength) result.dataLength = maxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; // overflow check (result is -ve)溢出检查 if ((result.data[lastPos] & 0x80000000) != 0) //结果为负数 { if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) //两乘数符号不同 { // handle the special case where multiplication produces // a max negative number in 2's complement. if (result.dataLength == 1) return result; else { bool isMaxNeg = true; for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++) { if (result.data[i] != 0) isMaxNeg = false; } if (isMaxNeg) return result; } } assert(false); } //两乘数符号不同,结果为负数 if (bi1Neg != bi2Neg) return -result; return result; } BigInteger BigInteger::operator =(const BigInteger &bi2) { if (&bi2 == this) { return *this; } if (data != NULL) { delete []data; data = NULL; } data = new unsigned int[maxLength]; memset(data, 0, maxLength * sizeof(unsigned int)); dataLength = bi2.dataLength; for (int i = 0; i < maxLength; i++) data[i] = bi2.data[i]; return *this; } BigInteger BigInteger::operator +(BigInteger &bi2) { int lastPos = maxLength - 1; bool bi1Neg = false, bi2Neg = false; BigInteger bi1(*this); BigInteger result; if ((this->data[lastPos] & 0x80000000) != 0) //bi1为负数 bi1Neg = true; if ((bi2.data[lastPos] & 0x80000000) != 0) //bi2为负数 bi2Neg = true; if(bi1Neg == false && bi2Neg == false) //bi1与bi2都是正数 { result.dataLength = (this->dataLength > bi2.dataLength) ? this->dataLength : bi2.dataLength; __int64 carry = 0; for (int i = 0; i < result.dataLength; i++) //从低位开始,逐位相加 { __int64 sum = (__int64)this->data[i] + (__int64)bi2.data[i] + carry; carry = sum >> 32; //进位 result.data[i] = (unsigned int)(sum & 0xFFFFFFFF); //取低位结果 } if (carry != 0 && result.dataLength < maxLength) { result.data[result.dataLength] = (unsigned int)(carry); result.dataLength++; } while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; //溢出检查 if ((this->data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (this->data[lastPos] & 0x80000000)) { assert(false); } return result; } //关键在于,负数全部要转化成为正数来做 if(bi1Neg == false && bi2Neg == true) //bi1正,bi2负 { BigInteger bi3 = -bi2; if(bi1 > bi3) { result = bi1 - bi3; return result; } else { result = -(bi3 - bi1); return result; } } if(bi1Neg == true && bi2Neg == false) //bi1负,bi2正 { BigInteger bi3 = -bi1; if(bi3 > bi2) { result = -(bi3 - bi2); return result; } else { result = bi2 - bi3; return result; } } if(bi1Neg == true && bi2Neg == true) //bi1负,bi2负 { result = - ((-bi1) + (-bi2)); return result; } } BigInteger BigInteger::operator -() { //逐位取反并+1 if (this->dataLength == 1 && this->data[0] == 0) return *this; BigInteger result(*this); for (int i = 0; i < maxLength; i++) result.data[i] = (unsigned int)(~(this->data[i])); //取反 __int64 val, carry = 1; int index = 0; while (carry != 0 && index < maxLength) //+1; { val = (__int64)(result.data[index]); val++; //由于值加了1个1,往前面的进位最多也只是1个1,因此val++就完了 result.data[index] = (unsigned int)(val & 0xFFFFFFFF); //取低位部分 carry = val >> 32; //进位 index++; } if ((this->data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000)) result.dataLength = maxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; return result; } BigInteger BigInteger::modPow(BigInteger exp, BigInteger n) //求this^exp mod n { if ((exp.data[maxLength - 1] & 0x80000000) != 0) //指数是负数 return BigInteger((__int64)0); BigInteger resultNum((__int64)1); BigInteger tempNum; bool thisNegative = false; if ((this->data[maxLength - 1] & 0x80000000) != 0) //底数是负数 { tempNum = -(*this) % n; thisNegative = true; } else tempNum = (*this) % n; //保证(tempNum * tempNum) < b^(2k) if ((n.data[maxLength - 1] & 0x80000000) != 0) //n为负 n = -n; //计算 constant = b^(2k) / m //constant主要用于后面的Baeert Reduction算法 BigInteger constant; int i = n.dataLength << 1; constant.data[i] = 0x00000001; constant.dataLength = i + 1; constant = constant / n; int totalBits = exp.bitCount(); int count = 0; //平方乘法算法 for (int pos = 0; pos < exp.dataLength; pos++) { unsigned int mask = 0x01; for (int index = 0; index < 32; index++) { if ((exp.data[pos] & mask) != 0) //某一个bit不为0 resultNum = BarrettReduction(resultNum * tempNum, n, constant); //resultNum = resultNum * tempNum mod n mask <<= 1; //不断左移 tempNum = BarrettReduction(tempNum * tempNum, n, constant); //tempNum = tempNum * tempNum mod n if (tempNum.dataLength == 1 && tempNum.data[0] == 1) { if (thisNegative && (exp.data[0] & 0x1) != 0) //指数为奇数 return -resultNum; return resultNum; } count++; if (count == totalBits) break; } } if (thisNegative && (exp.data[0] & 0x1) != 0) //底数为负数,指数为奇数 return -resultNum; return resultNum; } int BigInteger::bitCount() //计算字节数 { while (dataLength > 1 && data[dataLength - 1] == 0) dataLength--; unsigned int value = data[dataLength - 1]; unsigned int mask = 0x80000000; int bits = 32; while (bits > 0 && (value & mask) == 0) //计算最高位的bit { bits--; mask >>= 1; } bits += ((dataLength - 1) << 5); //余下的位都有32bit //左移5位,相当于乘以32,即2^5 return bits; } BigInteger BigInteger::BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) { //算法,Baeert Reduction算法,在计算大规模的除法运算时很有优势 //原理如下 //Z mod N=Z-[Z/N]*N=Z-{[Z/b^(n-1)]*[b^2n/N]/b^(n+1)}*N=Z-q*N //q=[Z/b^(n-1)]*[b^2n/N]/b^(n+1) //其中,[]表示取整运算,A^B表示A的B次幂 int k = n.dataLength, kPlusOne = k + 1, kMinusOne = k - 1; BigInteger q1; // q1 = x / b^(k-1) for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++) q1.data[j] = x.data[i]; q1.dataLength = x.dataLength - kMinusOne; if (q1.dataLength <= 0) q1.dataLength = 1; BigInteger q2 = q1 * constant; BigInteger q3; // q3 = q2 / b^(k+1) for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++) q3.data[j] = q2.data[i]; q3.dataLength = q2.dataLength - kPlusOne; if (q3.dataLength <= 0) q3.dataLength = 1; // r1 = x mod b^(k+1) // i.e. keep the lowest (k+1) words BigInteger r1; int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength; for (int i = 0; i < lengthToCopy; i++) r1.data[i] = x.data[i]; r1.dataLength = lengthToCopy; // r2 = (q3 * n) mod b^(k+1) // partial multiplication of q3 and n BigInteger r2; for (int i = 0; i < q3.dataLength; i++) { if (q3.data[i] == 0) continue; unsigned __int64 mcarry = 0; int t = i; for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) { // t = i + j unsigned __int64 val = ((unsigned __int64)q3.data[i] * (unsigned __int64)n.data[j]) + (unsigned __int64)r2.data[t] + mcarry; r2.data[t] = (unsigned int)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if (t < kPlusOne) r2.data[t] = (unsigned int)mcarry; } r2.dataLength = kPlusOne; while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0) r2.dataLength--; r1 -= r2; if ((r1.data[maxLength - 1] & 0x80000000) != 0) // negative { BigInteger val; val.data[kPlusOne] = 0x00000001; val.dataLength = kPlusOne + 1; r1 += val; } while (r1 >= n) r1 -= n; return r1; } bool BigInteger::operator >(BigInteger bi2) { int pos = maxLength - 1; BigInteger bi1(*this); // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return false; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return true; // same sign int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] > bi2.data[pos]) return true; return false; } return false; } bool BigInteger::operator ==(BigInteger bi2) { if (this->dataLength != bi2.dataLength) return false; for (int i = 0; i < this->dataLength; i++) { if (this->data[i] != bi2.data[i]) return false; } return true; } bool BigInteger::operator !=(BigInteger bi2) { if(this->dataLength != bi2.dataLength) return true; for(int i = 0; i < this->dataLength; i++) { if(this->data[i] != bi2.data[i]) return true; } return false; } BigInteger BigInteger::operator %(BigInteger bi2) { BigInteger bi1(*this); BigInteger quotient; BigInteger remainder(bi1); int lastPos = maxLength - 1; bool dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative bi2 = -bi2; if (bi1 < bi2) { return remainder; } else { if (bi2.dataLength == 1) singleByteDivide(bi1, bi2, quotient, remainder); //bi2只占一个位置时,用singleByteDivide更快 else multiByteDivide(bi1, bi2, quotient, remainder); //bi2占多个位置时,用multiByteDivide更快 if (dividendNeg) return -remainder; return remainder; } } void BigInteger::singleByteDivide(BigInteger &bi1, BigInteger &bi2, BigInteger &outQuotient, BigInteger &outRemainder) {//outQuotient商,outRemainder余数 unsigned int result[maxLength]; //用来存储结果 memset(result, 0, sizeof(unsigned int) * maxLength); int resultPos = 0; for (int i = 0; i < maxLength; i++) //将bi1复制至outRemainder outRemainder.data[i] = bi1.data[i]; outRemainder.dataLength = bi1.dataLength; while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) outRemainder.dataLength--; unsigned __int64 divisor = (unsigned __int64)bi2.data[0]; int pos = outRemainder.dataLength - 1; unsigned __int64 dividend = (unsigned __int64)outRemainder.data[pos]; //取最高位的数值 if (dividend >= divisor) //被除数>除数 { unsigned __int64 quotient = dividend / divisor; result[resultPos++] = (unsigned __int64)quotient; //结果 outRemainder.data[pos] = (unsigned __int64)(dividend % divisor); //余数 } pos--; while (pos >= 0) { dividend = ((unsigned __int64)outRemainder.data[pos + 1] << 32) + (unsigned __int64)outRemainder.data[pos]; //前一位的余数和这一位的值相加 unsigned __int64 quotient = dividend / divisor; //得到结果 result[resultPos++] = (unsigned int)quotient; //结果取低位 outRemainder.data[pos + 1] = 0; //前一位的余数清零 outRemainder.data[pos--] = (unsigned int)(dividend % divisor); //得到这一位的余数 } outQuotient.dataLength = resultPos; //商的长度是resultPos的长度 int j = 0; for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++) //将商反转过来 outQuotient.data[j] = result[i]; for (; j < maxLength; j++) //商的其余位都要置0 outQuotient.data[j] = 0; while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) outQuotient.dataLength--; if (outQuotient.dataLength == 0) outQuotient.dataLength = 1; while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) outRemainder.dataLength--; } void BigInteger::multiByteDivide(BigInteger &bi1, BigInteger &bi2, BigInteger &outQuotient, BigInteger &outRemainder) { unsigned int result[maxLength]; memset(result, 0, sizeof(unsigned int) * maxLength); //结果置零 int remainderLen = bi1.dataLength + 1; //余数长度 unsigned int *remainder = new unsigned int[remainderLen]; memset(remainder, 0, sizeof(unsigned int) * remainderLen); //余数置零 unsigned int mask = 0x80000000; unsigned int val = bi2.data[bi2.dataLength - 1]; int shift = 0, resultPos = 0; while (mask != 0 && (val & mask) == 0) { shift++; mask >>= 1; } //最高位从高到低找出shift个0位 for (int i = 0; i < bi1.dataLength; i++) remainder[i] = bi1.data[i]; //将bi1复制到remainder之中 this->shiftLeft(remainder, remainderLen, shift); //remainder左移shift位 bi2 = bi2 << shift; //向左移shift位,将空位填满 //由于两个数都扩大了相同的倍数,所以结果不变 int j = remainderLen - bi2.dataLength; //j表示两个数长度的差值,也是要计算的次数 int pos = remainderLen - 1; //pos指示余数的最高位的位置,现在pos=bi1.dataLength //以下的步骤并没有别的意思,主要是用来试商 unsigned __int64 firstDivisorByte = bi2.data[bi2.dataLength - 1]; //第一个除数 unsigned __int64 secondDivisorByte = bi2.data[bi2.dataLength - 2]; //第二个除数 int divisorLen = bi2.dataLength + 1; //除数的长度 unsigned int *dividendPart = new unsigned int[divisorLen]; //起名为除数的部分 memset(dividendPart, 0, sizeof(unsigned int) * divisorLen); while (j > 0) { unsigned __int64 dividend = ((unsigned __int64)remainder[pos] << 32) + (unsigned __int64)remainder[pos - 1]; //取余数的高两位 unsigned __int64 q_hat = dividend / firstDivisorByte; //得到一个商 unsigned __int64 r_hat = dividend % firstDivisorByte; //以及一个余数 bool done = false; //表示没有做完 while (!done) { done = true; if (q_hat == 0x100000000 || (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2])) //这里主要用来调整商的大小 //(q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))是害怕上的商过大,减之后变为负数 //商q_hat也不能超过32bit { q_hat--; //否则的话,就商小一点,余数大一点 r_hat += firstDivisorByte; if (r_hat < 0x100000000) //如果余数小于32bit,就继续循环 done = false; } } for (int h = 0; h < divisorLen; h++) //取被除数的高位部分,高位部分长度与除数长度一致 dividendPart[h] = remainder[pos - h]; BigInteger kk(dividendPart, divisorLen); BigInteger ss = bi2 * BigInteger((__int64)q_hat); while (ss > kk) //调节商的大小 { q_hat--; ss -= bi2; } BigInteger yy = kk - ss; //得到余数 for (int h = 0; h < divisorLen; h++) //将yy高位和remainder低位拼接起来,得到余数 remainder[pos - h] = yy.data[bi2.dataLength - h]; //取得真正的余数 result[resultPos++] = (unsigned int)q_hat; pos--; j--; } outQuotient.dataLength = resultPos; int y = 0; for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++) //将商反转过来 outQuotient.data[y] = result[x]; for (; y < maxLength; y++) //商的其余位都要置0 outQuotient.data[y] = 0; while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) outQuotient.dataLength--; if (outQuotient.dataLength == 0) outQuotient.dataLength = 1; outRemainder.dataLength = this->shiftRight(remainder, remainderLen, shift); for (y = 0; y < outRemainder.dataLength; y++) outRemainder.data[y] = remainder[y]; for (; y < maxLength; y++) outRemainder.data[y] = 0; delete []remainder; delete []dividendPart; } int BigInteger::shiftRight(unsigned int buffer[], int bufferLen,int shiftVal) //右移操作 {//自己用图画模拟一下移位操作,就能很快明白意义了 int shiftAmount = 32; int invShift = 0; int bufLen = bufferLen; while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; for (int count = shiftVal; count > 0; ) { if (count < shiftAmount) { shiftAmount = count; invShift = 32 - shiftAmount; } unsigned __int64 carry = 0; for (int i = bufLen - 1; i >= 0; i--) { unsigned __int64 val = ((unsigned __int64)buffer[i]) >> shiftAmount; val |= carry; carry = ((unsigned __int64)buffer[i]) << invShift; buffer[i] = (unsigned int)(val); } count -= shiftAmount; } while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; return bufLen; } BigInteger BigInteger::operator <<(int shiftVal) { BigInteger result(*this); result.dataLength = shiftLeft(result.data, maxLength, shiftVal); return result; } int BigInteger::shiftLeft(unsigned int buffer[], int bufferLen, int shiftVal) { int shiftAmount = 32; int bufLen = bufferLen; while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; for (int count = shiftVal; count > 0; ) { if (count < shiftAmount) shiftAmount = count; unsigned __int64 carry = 0; for (int i = 0; i < bufLen; i++) { unsigned __int64 val = ((unsigned __int64)buffer[i]) << shiftAmount; val |= carry; buffer[i] = (unsigned int)(val & 0xFFFFFFFF); carry = val >> 32; } if (carry != 0) { if (bufLen + 1 <= bufferLen) { buffer[bufLen] = (unsigned int)carry; bufLen++; } } count -= shiftAmount; } return bufLen; } bool BigInteger::operator <(BigInteger bi2) { BigInteger bi1(*this); int pos = maxLength - 1; // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return true; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return false; // same sign int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] < bi2.data[pos]) return true; return false; } return false; } BigInteger BigInteger::operator +=(BigInteger bi2) { *this = *this + bi2; return *this; } BigInteger BigInteger::operator /(BigInteger bi2) { BigInteger bi1(*this); BigInteger quotient; BigInteger remainder; int lastPos = maxLength - 1; bool divisorNeg = false, dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2 = -bi2; divisorNeg = true; } if (bi1 < bi2) { return quotient; } else { if (bi2.dataLength == 1) singleByteDivide(bi1, bi2, quotient, remainder); else multiByteDivide(bi1, bi2, quotient, remainder); if (dividendNeg != divisorNeg) return -quotient; return quotient; } } BigInteger BigInteger::operator -=(BigInteger bi2) { *this = *this - bi2; return *this; } BigInteger BigInteger::operator -(BigInteger bi2) //减法的重载 { BigInteger bi1(*this); BigInteger result; int lastPos = maxLength - 1; bool bi1Neg = false, bi2Neg = false; if ((this->data[lastPos] & 0x80000000) != 0) // bi1 negative bi1Neg = true; if ((bi2.data[lastPos] & 0x80000000) != 0) // bi1 negative bi2Neg = true; if(bi1Neg == false && bi2Neg == false) //bi1,bi2都为正数 { if(bi1 < bi2) { result = -(bi2 - bi1); return result; } result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; __int64 carryIn = 0; for (int i = 0; i < result.dataLength; i++) //从低位开始减 { __int64 diff; diff = (__int64)bi1.data[i] - (__int64)bi2.data[i] - carryIn; result.data[i] = (unsigned int)(diff & 0xFFFFFFFF); if (diff < 0) carryIn = 1; else carryIn = 0; } if (carryIn != 0) { for (int i = result.dataLength; i < maxLength; i++) result.data[i] = 0xFFFFFFFF; result.dataLength = maxLength; } // fixed in v1.03 to give correct datalength for a - (-b) while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; // overflow check if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { assert(false); } return result; } if(bi1Neg == true && bi2Neg == false) //bi1负,bi2正 { result = -(-bi1 + bi2); return result; } if(bi1Neg == false && bi2Neg == true) //bi1正,bi2负 { result = bi1 + (-bi2); return result; } if(bi1Neg == true && bi2Neg == true) //bi1,bi2皆为负 { BigInteger bi3 = -bi1, bi4 = -bi2; if(bi3 > bi4) { result = -(bi3 - bi4); return result; } else { result = bi4 - bi3; return result; } } } string BigInteger::DecToHex(unsigned int value, string format) //10进制数转换成16进制数,并用string表示 { string HexStr; int a[100]; int i = 0; int m = 0; int mod = 0; char hex[16]={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; while(value > 0) { mod = value % 16; a[i++] = mod; value = value/16; } for(i = i - 1; i >= 0; i--) { m=a[i]; HexStr.push_back(hex[m]); } while (format == string("X8") && HexStr.size() < 8) { HexStr = "0" + HexStr; } return HexStr; } string BigInteger::ToHexString() //功能:将一个大数用16进制的string表示出来 { string result = DecToHex(data[dataLength - 1], string("X")); for (int i = dataLength - 2; i >= 0; i--) { result += DecToHex(data[i], string("X8")); } return result; } ostream& operator<<(ostream& output, BigInteger &obj)//以16进制输出数值 { //if ((obj.data[obj.dataLength-1] & 0x80000000) != 0) // bi1 negative for(int i = obj.dataLength - 1; i >= 0; i--) output << hex << obj.data[i]; return output; } bool Miller_Robin(BigInteger &bi1) //Miller_Robin算法 { BigInteger one((__int64)1), two((__int64)2), sum, a, b, temp; int k = 0, len = primeLength / 2; temp = sum = bi1 - one; while((sum.data[0] & 0x00000001) == 0) //只要sum不为奇数,sum就一直往右移 { sum.dataLength = sum.shiftRight(sum.data, maxLength, 1); //右移一位 k++; } //sum即为要求的奇数,k即是要求的2的次数 srand((unsigned)time(0)); for(int i = 0; i < len; i++) { a.data[i] =(unsigned int)rand (); if(a.data[i] != 0) a.dataLength = i + 1; } b = a.modPow(sum, bi1); //b = a^m mod bi1 if (b == one) return true; for(int i = 0; i < k; i++) { if(b == temp) return true; else b = b.modPow(two, bi1); //b = b^2 mod bi1 } return false; } bool IsPrime (BigInteger &obj) { BigInteger zero; for(int i = 0; i < 303; i++) //先用一些素数对这个整数进行筛选 { BigInteger prime((__int64)primesBelow2000[i]); if(obj % prime == zero) return false; } cout << "第一轮素性检验通过… … … …" << endl; cout << "正在进行Miller_Robin素性检验… … … …" << endl; if(Miller_Robin(obj)) //进行1次Miller_Robin检验 return true; //通过了就返回result return false;//表明result是合数,没有通过检验 } BigInteger GetPrime() { BigInteger one((__int64)1), two((__int64)2), result; srand((unsigned)time(0)); //随机产生一个大整数 for(int i = 0; i < primeLength; i++) { result.data[i] =(unsigned int)rand(); if(result.data[i] != 0) result.dataLength = i + 1; } result.data[0] |= 0x00000001; //保证这个整数为奇数 while(!IsPrime(result)) //如果没有通过检验,就+2,继续检验 { result = result + two; cout << "检验没有通过,进行下一个数的检验,运行之中… … … …" << endl; cout << endl; } return result; } BigInteger extended_euclidean(BigInteger n, BigInteger m, BigInteger &x, BigInteger &y) //扩展的欧几里德算法 { BigInteger x1((__int64)1), x2, x3(n); BigInteger y1, y2((__int64)1), y3(m); BigInteger zero; while(x3 % y3 != zero) { BigInteger d = x3 / y3; BigInteger t1, t2, t3; t1 = x1 - d * y1; t2 = x2 - d * y2; t3 = x3 - d * y3; x1 = y1; x2 = y2; x3 = y3; y1 = t1; y2 = t2; y3 = t3; } x = y1; y = y2; return y3; } /* BigInteger extended_euclidean(BigInteger n,BigInteger m,BigInteger &x,BigInteger &y) { BigInteger zero, one((__int64)1); if(m == zero) { x = one; y = zero; return n; } BigInteger g = extended_euclidean(m, n%m, x, y); BigInteger t = x - n / m * y; x = y; y = t; return g; } */ BigInteger Gcd(BigInteger &bi1, BigInteger &bi2) { BigInteger x, y; BigInteger g = extended_euclidean(bi1, bi2, x, y); return g; } BigInteger MultipInverse(BigInteger &bi1, BigInteger &n) //求乘法逆元 { BigInteger x, y; extended_euclidean(bi1, n, x, y); if ((x.data[maxLength-1] & 0x80000000) != 0) // x negative x = x + n; // unsigned int i = x.data[maxLength-1] & 0x80000000; // cout << i << endl; return x; }
还需要一个用于计算消息hash值的MD5~
md5.h
#include <stdio.h> // #include <stdint.h> #include <string.h> #include <assert.h> #define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n)))) /*MD5的结果数据长度*/ static const unsigned int MD5_HASH_SIZE = 16; /*每次处理的BLOCK的大小*/ static const unsigned int MD5_BLOCK_SIZE = 64; //================================================================================================ /*MD5的算法*/ /*md5算法的上下文,保存一些状态,中间数据,结果*/ typedef struct md5_ctx { /*处理的数据的长度*/ unsigned __int64 length; /*还没有处理的数据长度*/ unsigned __int64 unprocessed; /*取得的HASH结果(中间数据)*/ unsigned int hash[4]; } md5_ctx; static void md5_init(md5_ctx *ctx) { ctx->length = 0; ctx->unprocessed = 0; /* initialize state */ /*不要奇怪为什么初始数值与参考数值不同,这是因为我们使用的数据结构的关系,大的在低位,小的在高位,8位8位一读*/ ctx->hash[0] = 0x67452301; /*应该这样读0x01234567*/ ctx->hash[1] = 0xefcdab89; /*0x89abcdef*/ ctx->hash[2] = 0x98badcfe; /*0xfedcba98*/ ctx->hash[3] = 0x10325476; /*0x76543210*/ } #define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z)) #define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define MD5_H(x, y, z) ((x) ^ (y) ^ (z)) #define MD5_I(x, y, z) ((y) ^ ((x) | (~z))) /* 一共4轮,每一轮使用不同函数*/ #define MD5_ROUND1(a, b, c, d, x, s, ac) { \ (a) += MD5_F((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND2(a, b, c, d, x, s, ac) { \ (a) += MD5_G((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND3(a, b, c, d, x, s, ac) { \ (a) += MD5_H((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND4(a, b, c, d, x, s, ac) { \ (a) += MD5_I((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } static void md5_process_block(unsigned int state[4], const unsigned int block[MD5_BLOCK_SIZE / 4]) { register unsigned a, b, c, d; a = state[0]; b = state[1]; c = state[2]; d = state[3]; const unsigned int *x = block; MD5_ROUND1(a, b, c, d, x[ 0], 7, 0xd76aa478); MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756); MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db); MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee); MD5_ROUND1(a, b, c, d, x[ 4], 7, 0xf57c0faf); MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a); MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613); MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501); MD5_ROUND1(a, b, c, d, x[ 8], 7, 0x698098d8); MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af); MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1); MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be); MD5_ROUND1(a, b, c, d, x[12], 7, 0x6b901122); MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193); MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e); MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821); MD5_ROUND2(a, b, c, d, x[ 1], 5, 0xf61e2562); MD5_ROUND2(d, a, b, c, x[ 6], 9, 0xc040b340); MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51); MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa); MD5_ROUND2(a, b, c, d, x[ 5], 5, 0xd62f105d); MD5_ROUND2(d, a, b, c, x[10], 9, 0x2441453); MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681); MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8); MD5_ROUND2(a, b, c, d, x[ 9], 5, 0x21e1cde6); MD5_ROUND2(d, a, b, c, x[14], 9, 0xc33707d6); MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87); MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed); MD5_ROUND2(a, b, c, d, x[13], 5, 0xa9e3e905); MD5_ROUND2(d, a, b, c, x[ 2], 9, 0xfcefa3f8); MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9); MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a); MD5_ROUND3(a, b, c, d, x[ 5], 4, 0xfffa3942); MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681); MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122); MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c); MD5_ROUND3(a, b, c, d, x[ 1], 4, 0xa4beea44); MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9); MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60); MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70); MD5_ROUND3(a, b, c, d, x[13], 4, 0x289b7ec6); MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa); MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085); MD5_ROUND3(b, c, d, a, x[ 6], 23, 0x4881d05); MD5_ROUND3(a, b, c, d, x[ 9], 4, 0xd9d4d039); MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5); MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8); MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665); MD5_ROUND4(a, b, c, d, x[ 0], 6, 0xf4292244); MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97); MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7); MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039); MD5_ROUND4(a, b, c, d, x[12], 6, 0x655b59c3); MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92); MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d); MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1); MD5_ROUND4(a, b, c, d, x[ 8], 6, 0x6fa87e4f); MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0); MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314); MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1); MD5_ROUND4(a, b, c, d, x[ 4], 6, 0xf7537e82); MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235); MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb); MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391); state[0] += a; state[1] += b; state[2] += c; state[3] += d; } static void md5_update(md5_ctx *ctx, const unsigned char *buf, unsigned int size) { /*为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed*/ ctx->length += size; /*每个处理的块都是64字节*/ while (size >= MD5_BLOCK_SIZE) { md5_process_block(ctx->hash, reinterpret_cast<const unsigned int *>(buf)); buf += MD5_BLOCK_SIZE; /*buf指针每一次向后挪动64*/ size -= MD5_BLOCK_SIZE; /*每一次处理64个字符*/ } ctx->unprocessed = size; /*未处理的字符数数目记录下来*/ } static void md5_final(md5_ctx *ctx, const unsigned char *buf, unsigned int size, unsigned char *result) { unsigned int message[MD5_BLOCK_SIZE / 4]; memset(message, 0 ,(MD5_BLOCK_SIZE / 4) * sizeof(unsigned int)); /*保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节*/ if (ctx->unprocessed) { memcpy(message, buf + size - ctx->unprocessed, static_cast<unsigned int>( ctx->unprocessed)); /*================================================================================ 这里的memcpy复制很有趣,是按照字节复制比如说buf --- 0x11 0x14 0xab 0x23 0xcd | ctx>unprocessed_=5 现在copy至 message --- 0x23ab1411 0x000000cd 这样的话,下面的也很好解释了! =================================================================================*/ } /*================================================================================= 用法:static_cast < type-id > ( expression ) 该运算符把expression转换为type-id类型 ==================================================================================*/ /*得到0x80要添加在的位置(在unsigned int 数组中)*/ unsigned int index = ((unsigned int)ctx->length & 63) >> 2; /*一次性处理64个unsigned int型数据,(unsigned int)ctx->length_ & 63求出余下多少未处理的字符*/ unsigned int shift = ((unsigned int)ctx->length & 3) * 8; /*一个message里面可以放置4个字符数据,找到应该移动的位数*/ /*添加0x80进去,并且把余下的空间补充0*/ message[index++] ^= 0x80 << shift; /*^ 位异或*/ /*如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block*/ if (index > 14) { while (index < 16) { message[index++] = 0; } md5_process_block(ctx->hash, message); index = 0; } /*补0*/ while (index < 14) { message[index++] = 0; } /*保存长度,注意是bit位的长度*/ unsigned __int64 data_len = (ctx->length) << 3; message[14] = (unsigned int) (data_len & 0x00000000FFFFFFFF); message[15] = (unsigned int) ((data_len & 0xFFFFFFFF00000000ULL) >> 32); md5_process_block(ctx->hash, message); memcpy(result, &ctx->hash, MD5_HASH_SIZE); } unsigned char* md5(const unsigned char *buf, unsigned int size, unsigned char result[MD5_HASH_SIZE]) { md5_ctx ctx; md5_init(&ctx); /*初始化*/ md5_update(&ctx, buf, size); md5_final(&ctx, buf, size, result); return result; }然后才是ELGamal的实现~
ELGamal.h
#include <string> #include "BigInteger.h" #include "md5.h" /* *事先说明一句:由于大素数的本原元很难求得,所以这里的数字签名所需要的数字我都提前给出 *避免了没必要的十分耗时的生成过程,大家也可以直接修改这些数字,即使是很大的数也支持! */ /*测试数据: * 素数 p = 19, 本原元 g = 2, 私钥 x = 9, 公钥 y = 18, 随机取值 k = 5 */ string prime("19"), prielem("2"), key("9"), pubKey("18"), randomK("5"); /*数的初始化*/ /*p 素数 g 本原元 x 私钥 y 公钥 k 随机取值*/ BigInteger p(prime, 10),g(prielem, 10), x(key, 10), y(pubKey, 10), k(randomK, 10), one((__int64)1), two((__int64)2); /*签名*/ void elgamalSign(unsigned char *message, int len, BigInteger &r, BigInteger &s) { /*m 为消息所对应的明文数值*/ unsigned char result[16] ={0}; md5(message, len, result); /*输出MD5值*/ cout << "消息的MD5散列值为:" ; for (int i = 0; i < 16; i++) printf ("%02x", result[i]); cout << endl; /*用md5作为消息的hash值*/ /*用hash值初始化m*/ BigInteger m(result, 16), pMinusOne(p - one); BigInteger k1; r = g.modPow(k, p); /*k1 为 k 在 p - 1 下的逆元*/ k1 = MultipInverse(k, pMinusOne); s = ((m - x * r) * k1 ) % pMinusOne; } /*签名验证*/ bool elgamalVerifiSign(unsigned char *message, int len, BigInteger &r, BigInteger &s) { cout << "接收到消息的MD5散列值为:"; unsigned char result[16] ={0}; md5(message, len, result); for (int i = 0; i < 16; i++) printf ("%02x", result[i]); cout << endl; BigInteger leftValue, rightValue; BigInteger m(result, 16); leftValue = (y.modPow(r, p) * r.modPow(s, p)) % p; rightValue = g.modPow(m, p); if (leftValue == rightValue) { return true; } else { return false; } }最后上一个主函数测试一下!
main.cpp
/*==================================================== 题目5 ELGamal数字签名方案的实现 1. 问题描述 为简化问题,我们取p=19,g=2,私钥x=9,则公钥y=29 mod 19=18。 消息m的ELGamal签名为(r,s),其中r=gk mod p,s=(h(m)-xr)k-1 mod (p-1) 2.基本要求 考虑p取大素数的情况。 3. 实现提示 ① 模n求逆a-1mod n运算。 ② 模n的大数幂乘运算 ======================================================*/ //本原元的概念:若模n下a的阶d=φ(n),a就是n的本原元(又称为原根)。此时a是Z*_n的生成元。 /*====================================================== Diffie-Hellman 算法下面就给出一个快速求大素数 p 及其本原根的算法 算法如下: P1. 利用素性验证算法,生成一个大素数 q; P2. 令 p = q * 2 + 1; P3. 利用素性验证算法,验证 p 是否是素数,如果 p 是合数,则跳转到 P1; P4. 生成一个随机数 g,1 < g < p - 1; P5. 验证 g2 mod p 和 gq mod p 都不等于 1,否则跳转到 P4; P6. g 是大素数 p 的本原根。 ======================================================*/ #include "ELGamal.h" int main() { /*================================================================ //求一个大素数以及其本原元有点难度,速度慢到不行,我丢弃了这个想法,素数和本原元直接输入 BigInteger p((__int64)3), q, two((__int64)2), one((__int64)1), g, zero; srand((unsigned)time(0)); bool flag = false; while(!flag) { q = GetPrime(); //得到一个大素数 //cout << q << endl; //system("pause"); p = q * two + one; if(IsPrime(p)) flag = true; } while ((g * g) % p != one && (g * q) % p != one ) { unsigned int len = rand() % 20; for (int i = 0; i < len; i++) //产生一个随机数g { g.data[i] = (unsigned int)rand (); if(g.data[i] != 0) g.dataLength = i + 1; } } cout << p << endl; cout << g << endl; ========================================================*/ cout << "签名者 A:" << endl; string message; BigInteger r, s; cout << "请输入要签名的消息:" << endl; cin >> message; elgamalSign((unsigned char *)message.c_str(), message.length(), r, s); cout << "签名信息如下:" << endl; cout << "r = " << r << endl; cout << "s = " << s << endl; cout << endl; /* unsigned int len = rand() % 10; for (int i = 0; i < len; i++) { k.data[i] = (unsigned int)rand (); if(k.data[i] != 0) k.dataLength = i + 1; } temp = p - one; while(Gcd(k,p - one) != one) { k = k + two; } cout << k <<endl; */ cout << "现在将 消息 以及 r s 传递给接收方 B ~~~ ~~~" << endl; cout << endl; cout << "接受者 B:" << endl; if (elgamalVerifiSign((unsigned char *)message.c_str(), message.length(), r, s)) { cout << "签名有效" << endl; } else { cout << "签名无效" << endl; } system ("pause"); return 0; }
作者:lishuhuakai 发表于2013-6-18 9:54:41 原文链接
阅读:0 评论:0 查看评论