例子:数组 1, 2, 4, 7, 10, 11, 7, 12, 6, 7, 16, 18, 19 只要对下标3到9之间的元素排序,就能使整个数组有序
思路是:
// Left: 1, 2, 4, 7, 10, 11
// Middle: 7, 12
// Right: 6, 7, 16, 18, 19
1 找到左边递增序列的最右(最大)的那个元素 11
2 找到右边递增序列最左(最小)的那个元素 6
3 找到中间序列的最小元素 7
4 找到中间序列的最大元素 12
5 找到左边递增序列中比中间序列最小元素(7)还要小或等于的下标(元素7,下标3)
6 找到右边递增序列中比中间序列最大元素(12)还要大或等于的下标的前一个元素(元素7,下标9)
package Moderate; /** * Given an array of integers, write a method to find indices m and n such that if you sorted elements m through n, the entire array would be sorted. Minimize n-m (that is, find the smallest such sequence). 给定了一个整数数组,写一个方法来找到下标m和n使得如果把m到n之间的数排序, 则整个数组也会被排好序。要使得m到n的区间尽量小 * */ public class S17_6 { // 找到左边递增序列的最右(最大)的那个元素 11 public static int findEndOfLeftSubsequence(int[] array) { for (int i = 1; i < array.length; i++) { if (array[i] < array[i - 1]) { // 不再递增了! return i - 1; } } return array.length - 1; } // 找到右边递增序列最左(最小)的那个元素 6 public static int findStartOfRightSubsequence(int[] array) { for (int i = array.length - 2; i >= 0; i--) { if (array[i] > array[i + 1]) { // 不再递减了 return i + 1; } } return 0; } // 找到左边递增序列中比中间序列最小元素(7)还要小或等于的下标(元素7,下标3) public static int shrinkLeft(int[] array, int min_index, int start) { int comp = array[min_index]; for (int i = start - 1; i >= 0; i--) { if (array[i] <= comp) { return i + 1; } } return 0; } // 找到右边递增序列中比中间序列最大元素(12)还要大或等于的下标的前一个元素(元素7,下标9) public static int shrinkRight(int[] array, int max_index, int start) { int comp = array[max_index]; for (int i = start; i < array.length; i++) { if (array[i] >= comp) { return i - 1; } } return array.length - 1; } public static void findUnsortedSequence(int[] array) { // find left subsequence int end_left = findEndOfLeftSubsequence(array); // find right subsequence int start_right = findStartOfRightSubsequence(array); // find min and max element of middle int min_index = end_left + 1; if (min_index >= array.length) { // System.out.println("The array is already sorted."); return; // Already sorted } int max_index = start_right - 1; for (int i = end_left; i <= start_right; i++) { if (array[i] < array[min_index]) { min_index = i; } if (array[i] > array[max_index]) { max_index = i; } } // slide left until less than array[min_index] int left_index = shrinkLeft(array, min_index, end_left); // slide right until greater than array[max_index] int right_index = shrinkRight(array, max_index, start_right); if (validate(array, left_index, right_index)) { System.out.println("TRUE: " + left_index + " " + right_index); } else { System.out.println("FALSE: " + left_index + " " + right_index); } } /* * Validate that sorting between these indices will sort the array. Note * that this is not a complete validation, as it does not check if these are * the best possible indices. */ public static boolean validate(int[] array, int left_index, int right_index) { int[] middle = new int[right_index - left_index + 1]; for (int i = left_index; i <= right_index; i++) { middle[i - left_index] = array[i]; } java.util.Arrays.sort(middle); for (int i = left_index; i <= right_index; i++) { array[i] = middle[i - left_index]; } for (int i = 1; i < array.length; i++) { if (array[i - 1] > array[i]) { return false; } } return true; } public static void main(String[] args) { int[] array = { 1, 2, 4, 7, 10, 11, 7, 12, 6, 7, 16, 18, 19 }; // Left: 1, 2, 4, 7, 10, 11 // Middle: 7, 12 // Right: 6, 7, 16, 18, 19 findUnsortedSequence(array); } }
作者:hellobinfeng 发表于2013-12-3 1:55:04 原文链接
阅读:122 评论:0 查看评论