经典的计算几何题目,最小圆覆盖。
点增量算法,复杂度O(n^3)
加入随机化,复杂度可以降到O(n^2)
三点的外接圆圆心的函数:
POINT circumcenter(POINT &a, POINT &b, POINT &c) { POINT ret; double a1=b.x-a.x, b1=b.y-a.y, c1=(a1*a1+b1*b1)/2; double a2=c.x-a.x, b2=c.y-a.y, c2=(a2*a2+b2*b2)/2; double d = a1*b2 - a2*b1; ret.x = a.x + (c1*b2-c2*b1)/d; ret.y = a.y + (a1*c2-a2*c1)/d; return ret; }
这道题目在HDU上面也有,但是两道题目代码不能互相AC,应该是数据的原因,各种精度问题,还是看重算法吧,暂且把数据无视了。
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <cstdlib> using namespace std; #define N 110 struct POINT { double x, y; } p[N]; int n; inline double dist(const POINT &a, const POINT &b) { return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); } POINT circumcenter(POINT &a, POINT &b, POINT &c) { POINT ret; double a1=b.x-a.x, b1=b.y-a.y, c1=(a1*a1+b1*b1)/2; double a2=c.x-a.x, b2=c.y-a.y, c2=(a2*a2+b2*b2)/2; double d = a1*b2 - a2*b1; ret.x = a.x + (c1*b2-c2*b1)/d; ret.y = a.y + (a1*c2-a2*c1)/d; return ret; } void solve() { random_shuffle(p, p+n); //随机化序列,std里面的随机函数 POINT c; double r = 0; for (int i=1; i<n; i++) { if (dist(p[i], c) <= r) continue; c = p[i]; r = 0; for (int j=0; j<i; j++) { if (dist(p[j], c) <= r) continue; c.x = (p[i].x+p[j].x)/2; c.y = (p[i].y+p[j].y)/2; r = dist(p[j], c); for (int k=0; k<j; k++) { if (dist(p[k], c) <= r) continue; c = circumcenter(p[i], p[j], p[k]); r = dist(p[i], c); } } } printf("%.2lf %.2lf %.2lf\n", c.x, c.y, r); } int main() { while (scanf(" %d", &n) == 1 && n) { for (int i=0; i<n; i++) scanf(" %lf %lf", &p[i].x, &p[i].y); solve(); } return 0; }
作者:yang_7_46 发表于2013-3-3 17:08:33 原文链接
阅读:57 评论:0 查看评论